Графики простейших функций — линейная, параболы, гиперболы, экспоненты, показательные, степенные, логарифмическая, синус, косинус, тангенс, котангенс изучаемых в школе Справочная таблица. Примерно 7-9

Графики простейших функций — линейная, параболы, гиперболы, экспоненты, показательные, степенные, логарифмическая, синус, косинус, тангенс, котангенс изучаемых в школе Справочная таблица.

Название функции Формула функции График функции Название графика Комментарий
Линейная, прямая пропорциональность y = kx График линейной функции y = kx : прямая линия, проходящая через 0 Прямая Cамый простой частный случай линейной зависимости — прямая пропорциональность у = kx, где k ≠ 0 — коэффициент пропорциональности. На рисунке пример для k = 1, т.е. фактически приведенный график иллюстрирует функциональную зависимость, которая задаёт равенство значения функции значению аргумента.
Линейная, прямая пропорциональность со сдвигом y = kx + b График линейной функции y = kx + b : прямая линия Прямая Общий случай линейной зависимости: коэффициенты k и b — любые действительные числа. Здесь k = 0.5, b = -1.
Квадратичная функция y = x2 График квадратичной функции - простая парабола Парабола Простейший случай квадратичной зависимости — симметричная парабола с вершиной в начале координат.
Квадратичная функция y = ax2 + bx + c График квадратичной функции - парабола Парабола Общий случай квадратичной зависимости: коэффициент a — произвольное действительное число не равное нулю (a принадлежит R, a ≠ 0), b, c — любые действительные числа
Степенная функция y = x3 График кубической функции Кубическая парабола Самый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе "Преобразование графиков функций".
Степенная — корень квадратный y = x1/2 График функции корень из х График функции
y = √x
Самый простой случай для дробной степени (x1/2 = √x). Случаи с коэффициентами изучаются в разделе "Преобразование графиков функций".
Степенная — обратная пропорциональность y = k/x График обратной пропорциональности - гипербола Гипербола Самый простой случай для целой отрицательной степени (1/x = x-1) — обратно-пропорциональная зависимость. Здесь k = 1.
Показательная функция y = ex График экспоненциальной функции - экспонента. Экспонента Экспоненциальной зависимостью называют показательную функцию для основания e — иррационального числа примерно равного 2,7182818284590…
Показательная функция y = ax График показательной функции График показательной функции а>1 Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 2x (a = 2 > 1).
Показательная функция y = ax График показательной функции График показательной функции 0<a<1 Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5x (a = 1/2 < 1).
Логарифмическая функция y = ln(x) График логарифмической функции - натуральный логарифм График логарифмической функции — натуральный логарифм График логарифмической функции для основания e (натурального логарифма) иногда называют логарифмикой.
Логарифмическая функция y = logax График логарифмической функции - логарифм по основанию а График логарифмической функции — логарифм по основанию а>1 Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1).
Логарифмическая функция y = logax График логарифмической функции - логарифм по основанию а График логарифмической функции 0<a<1 Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2 < 1).
Синус y = sinx График тригонометрической функции синус Синусоида Тригонометрическая функция синус. Случаи с коэффициентами изучаются в разделе "Преобразование графиков функций".
Косинус y = cosx График тригонометрической функции косинус Косинусоида Тригонометрическая функция косинус. Случаи с коэффициентами изучаются в разделе "Преобразование графиков функций".
Тангенс y = tgx График тригонометрической функции тангенс Тангенсоида Тригонометрическая функция тангенс. Случаи с коэффициентами изучаются в разделе "Преобразование графиков функций".
Котангенс y = сtgx График тригонометрической функции котангенс Котангенсоида Тригонометрическая функция котангенс. Случаи с коэффициентами изучаются в разделе "Преобразование графиков функций".
Оценка статьи:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)