Объемы простых тел. Прямоугольный параллелепипед, Цилиндр, Пирамида, Конус, Сфера, Параллелепипед.

Формулы объема

Объемы простых тел. Прямоугольный параллелепипед, Цилиндр, Пирамида, Конус, Сфера, Параллелепипед.

Объемы и площади поверхностей правильных тел.

Общая информация об объемах и площадях поверхностей правильных тел приведена в таблице.

Название фигуры Площадь и объем фигуры S Название фигуры Площадь и объем фигуры S
Прямоугольный параллелепипед Площадь и объем прямоугольного параллелограмма Цилиндр Площадь и объем цилиндра
Пирамида Площадь и объем пирамиды Конус Площадь и объем конуса
Сфера Площадь и объем сферы Параллелепипед Площадь и объем параллелограмма

Пример 1.Расчет объема прямоугольного бака.

Бак для воды имеет форму прямоугольного параллелепипеда длиной 1 м, шириной 65 см и высотой 30 см. Определить объем бака в м3, см3, литрах

Решение:

Объем прямоугольного параллелепипеда равен l*b*h

а)Vбака=1*0.65*03=0.195 м3

б) 1 м 315000 мм2=315000/100=3150 см2

1 м3=106 см3, значит, 0.195 м3=0.195*106=195000 см3

в) 1 литр=1000 см3, значит 195000 см3=195 л

Пример 2. Расчет объема и площади поверхности трапецеидальной призмы.
Призма
Вычислить объем и общую площадь поверхности призмы, показанной на рис.

Тело, показанное на рис. — это трапецеидальная призма.

Так как объем = площадь поперечного сечения * высота, то

V=1/2*(10+5)*4*20=30*20=600 cм3

Так как площадь поверхности вычисляется сложением суммы площадей двух трапеций и суммы площадей четырех прямоугольников, то

S=(2*30)+3(5*20)+(10*20)=560 см2

Пример 3. Расчет объема и общей площади поверхности правильной пирамиды.

Пирамида

Определить объем и общую площадь поверхности правильной пирамиды с квадратным основанием, показанной на рис., если ее высота равна 15 см.

Решение:

Так как объем пирамиды =1/3(площадь основания)*высота, то

V=1/3*(5*5)*15=125 см3

Общая площадь поверхности включает площадь квадратного основания и площади четырех равных треугольников.

Площадь треугольника ADE=1/2*основание*(высота грани).

Высоту грани АС можно найти по теореме Пифагора из треугольника АВС, где АВ=15 см, ВС=1/2*3=1.5 см, и АС2=AB2+BC2=225+2.25=227.25

AC=15.07 cм

Следовательно, площадь треугольника ADE

SADE=1/2*3*15.07=22.605 см2

Общая площадь пирамиды S=(3*3)+4*22.605=99.42 cм2.

Пример 4. Расчет объема и общей площади поверхности конуса.

Конус

Определить объем и общую площадь поверхности конуса радиусом 4 см и высотой 10 см.

Объем конуса V=1/3πr2h =1/3*π42*10=167.5см3

Общая площадь поверхности равна сумме площади конической поверхности и площади основания, т.е. S=πrl+πr2

Из рисунка видно, что длину образующей l можно найти по теореме Пифагора.

l2=102+42=116 см

l=10,8 cм

Следовательно, общая площадь поверхности равна

S=π*4*10.8)+(π*42=185.89 cм2

Пример 5. Расчет объема и общей площади поверхности призмы.

Деревянный профиль

На рис. показан деревянный профиль. Найдем: а) его объем в м3

б) общую площадь его поверхности

Профиль представляет собой призму, поперечное сечение которой состоит из прямоугольника и полукруга. Поскольку радиус полукруга равен 6 см, диаметр равен 12 см.

Тогда размеры прямоугольника 12*11 см

Площадь поперечного сечения S.=(11*12)+1/2* π 62=188,52 см2

Поскольку объем деревянной детали равен произведению площади поперечного сечения на длину, то

a) V=188,52*200=37704 см3=37704 см3/106= 0,037704 м3

б) Общая площадь включает два торца (площадь каждого 188,52 см2), три прямоугольника и криволинейную поверхность (которая представляет собой полуцилиндр). Следовательно, общая площадь поверхности

S=(2*188,52)+2*(11*200)+(12*200)+1/2*(2π*6*200)=377,04+4400+2400+3768=10945,04 см2=1,094504 м2.

Пример 6. Расчет объема и общей площади поверхности сложного бойлера.

Бойлер состоит из цилиндрической секции длиной 9 м и диаметром 5 м, к одному концу которой присоединена полусферическая секция диаметром 5 м, а к другому концу — коническая секция высотой 3 м и диаметром основания 5 м. Вычислить объем бойлера и общую площадь его поверхности.

Бойлер

Vполусферы P =2/3*πr3 =2/3*π*2,53 =10,42 π м3

V цилиндра Q = π r2h=π*2,52*9=56,25 π м3

V конуса R =1/3 π r2=1/3*π*2,52*3=6,25π м 3

Общий объем бойлера V= 10,42 π м3+56,25 π м3+6,25π м 3=72,92π=228,97 м 3

S полусферы P. =2*(πr2)=2*π*2,52=12,5π м2

S бок. поверхности цилиндра Q. =2πrh=2*π*2,5*9=45π м2 (т.к. этот цилиндр представляет собой трубу без оснований)

Длина образующей конуса l рассчитывается по теореме Пифагора из треугольника ABC;

значит

l=(32+2,52)1/2=3,9 м.

S конуса R. =πrl=π*2,5*3,9=9,75 π м 2

Общая площадь поверхности бойлера

S= 12,5π+45π+9,75 π=67,25π=211,2 м 2

Оценка статьи:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)