Функция распределения случайной величины.

Функция распределения вероятностей и ее свойства.

Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем х, т.е. F(x)=P{X < х}.
Рассмотрим свойства функции F(x).

1. F(-∞)=lim(x→-∞)F(x)=0. Действительно, по определению, F(-∞)=P{X < -∞}. Событие (X < -∞) является невозможным событием: F(-∞)=P{X < — ∞}=p{V}=0.

2. F(∞)=lim(x→∞)F(x)=1, так как по определению, F(∞)=P{X < ∞}. Событие Х < ∞ является достоверным событием. Следовательно, F(∞)=P{X < ∞}=p{U}=1.

3. Вероятность того, что случайная величина примет значение из интервала [Α Β] равна приращению функции распределения вероятностей на этом интервале. P{Α ≤X<Β}=F(Β)-F(Α).

4. F(x2)≥ F(x1 ), если x2, > x1, т.е. функция распределения вероятностей является неубывающей функцией.

5. Функция распределения вероятностей непрерывна слева. FΨ(xo-0)=limFΨ(x)=FΨ(xo) при х→ xo

Различия между функциями распределения вероятностей дискретной и непрерывной случайных величин хорошо иллюстрировать графиками. Пусть, например, дискретная случайная величина имеет n возможных значений, вероятности которых равны P{X=xk}=pk, k=1,2,..n. Если x ≤ x1, то F(Х)=0, так как левее х нет возможных значений случайной величины. Если x1< x ≤ x2 , то левее х находится всего одно возможное значение, а именно, значение х1.

Функция распределения непрерывной случайной величины

Значит, F(x)=P{X=x1}=p1.При x2< x ≤ x3 слева от х находится уже два возможных значения, поэтому F(x)=P{X=x1}+P{X=x2}=p1+p2. Рассуждая аналогично,приходим к выводу, что если хk< x≤ xk+1, то F(x)=1, так как функция будет равна сумме вероятностей всех возможных значений, которая по условию нормировки равна еденице. Таким образом, график функции распределения дискретной случайной величины является ступенчатым. Возможные значения непрерывной величины располагаются плотно на интервале задания этой величины, что обеспечивает плавное возрастания функции распределения F(x), т.е. ее непрерывность.

Рассмотрим вероятность попадания случайной величины в интервал [x, x+Δx], Δx>0: P{x≤X< x+Δx}=F(x+ Δx)-F(x). Перейдем к пределу при Δx→0:

lim(Δx→0)P{x≤ X < x+Δx}=lim(Δx→0)F(x+Δx)-F(x). Предел равен вероятности того, что случайная величина примет значение, равное х. Если функция F(x) непрерывна в точке х, то lim(Δx→0)F(x+Δx)=F(x), т.е. P{X=x}=0.

Если F(x) имеет разрыв в точке х, то вероятность P{X=x} будет равна скачку функции в этой точке. Таким образом, вероятность появления любого возможного значения для непрерывной величины равна нулю. Выражение P{X=x}=0 следует понимать как предел вероятности попадания случайной величины в бесконечно малую окрестность точки х при P{Α< X≤ Β},P{Α ≤ X< Β},P{Α< X< Β},P{Α ≤ X≤ Β} равны, если Х — непрерывная случайная величина.

Для дискретных величин эти вероятности неодинаковы в том случае, когда границы интервала Α и(или) Β совпадают с возможными значениями случайной величин. Для дискретной случайной величины необходимо строго учитывать тип неравенства в формуле P{Α ≤X<Β}=F(Β)-F(Α).

Оценка статьи:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)